Biochemical Oxygen Demand
(BOD)
Biochemical Oxygen Demand, or BOD, is a measure of the quantity of oxygen consumed by
microorganisms during the decomposition of organic matter. BOD is the most commonly used
parameter for determining the oxygen demand on the receiving water of a municipal or industrial
discharge. BOD can also be used to evaluate the efficiency of treatment processes, and is an
indirect measure of biodegradable organic compounds in water.
Imagine a leaf falling into a stream. The leaf, which is composed of organic matter, is readily
degraded by a variety of microorganisms inhabiting the stream. Aerobic (oxygen requiring)
bacteria and fungi use oxygen as they break down the components of the leaf into simpler, more
stable end products such as carbon dioxide, water, phosphate and nitrate. As oxygen is
consumed by the organisms, the level of dissolved oxygen in the stream begins to decrease
Water can hold only a limited supply of dissolved oxygen and it comes from only two sourcesdiffusion
from the atmosphere at the air/water interface, and as a byproduct of photosynthesis.
Photosynthetic organisms, such as plants and algae, produce oxygen when there is a sufficient
light source. During times of insufficient light, these same organisms consume oxygen. These
organisms are responsible for the diurnal (daily) cycle of dissolved oxygen levels in lakes and
streams.
If elevated levels of BOD lower the concentration of dissolved oxygen in a water body, there is a
potential for profound effects on the water body itself, and the resident aquatic life. When the
dissolved oxygen concentration falls below 5 milligrams per liter (mg/l), species intolerant of low
oxygen levels become stressed. The lower the oxygen concentration, the greater the stress.
Eventually, species sensitive to low dissolved oxygen levels are replaced by species that are
more tolerant of adverse conditions, significantly reducing the diversity of aquatic life in a given
body of water. If dissolved oxygen levels fall below 2 mg/l for more than even a few hours, fish
kills can result. At levels below 1 mg/l, anaerobic bacteria (which live in habitats devoid of
oxygen) replace the aerobic bacteria. As the anaerobic bacteria break down organic matter, foulsmelling
hydrogen sulfide can be produced.
BOD is typically divided into two parts- carbonaceous oxygen demand and nitrogenous oxygen
demand